Flux Insights

Leverages public and private data to enable firms to capitalise, on proprietary and non-proprietary information. Using open sourced technologies and statistical models.

Predicting Lifestyle Diseases 🌟

Predicting Lifestyle Diseases 🌟

Machine learning (ML) has emerged as a powerful tool for predicting the onset of lifestyle diseases, which are often linked to unhealthy habits and behaviours. These diseases include diabetes, heart disease, chronic kidney disease, and others.

By leveraging large datasets and advanced algorithms, ML models can provide early warnings and personalised risk assessments, potentially improving patient outcomes and reducing healthcare costs.

Key Insights

Support Vector Machine (SVM) for Lifestyle Disease Prediction SVM models are effective in predicting lifestyle diseases by analysing an individual's lifestyle data, offering a low-cost alternative to genetic testing (Khan et al., 2019). πŸ“ŠπŸ’»

Use of Periodical Health Checkup Data Regular health checkup data can be used to predict the onset of lifestyle-related diseases within a year, with methods like under sampling and bagging improving precision and recall (Wang et al., 2018). πŸ©ΊπŸ“…

Ensemble Learning and Feature Selection Combining genetic algorithm-based recursive feature elimination with AdaBoost enhances the prediction of multiple lifestyle diseases, demonstrating higher efficiency compared to traditional methods (Zhang et al., 2017). πŸŒŸπŸ”

Comparative Analysis of ML Techniques for Diabetes Prediction Random Forest (RF) outperforms other models like SVM, Logistic Regression (LR), and K-Nearest Neighbor (KNN) in predicting diabetes, achieving an accuracy rate of 92.85% (Rahman et al., 2016). πŸŒ²πŸ“ˆ

Multi-Disease Prediction Systems that use multiple classification algorithms (e.g., KNN, SVM, Decision Tree, RF, Logistic Regression) can predict several diseases, including diabetes, heart disease, chronic kidney disease, and cancer, through a single user interface (Lee et al., 2020). πŸ₯πŸ’‘

Fused Machine Learning Models Combining SVM and Artificial Neural Network (ANN) models with fuzzy logic improves the accuracy of diabetes prediction, achieving a prediction accuracy of 94.87% (Chen et al., 2019). πŸ€–πŸ’ͺ

Personalised Risk Assessment for Heart Disease: ML models like KNN, Decision Tree, Gradient Boosting, and Gaussian Naive Bayes can provide personalised risk assessments for heart disease by analysing lifestyle choices and medical conditions (Smith et al., 2018). β€οΈπŸ“‰

Conclusion

Machine learning techniques are proving to be highly effective in predicting the onset of lifestyle diseases. By utilising various algorithms and combining them with advanced feature selection methods, these models can offer accurate, low-cost, and personalised predictions. This not only aids in early detection and prevention but also enhances the overall efficiency of healthcare systems. 🌐✨

Join Our Community: Here πŸ‘ˆ πŸ˜€

Follow Us on LinkedIn: Here πŸ‘ˆ. πŸ˜€

Unlocking the Potential of AI: The Impact of Machine Learning on Healthcare Outcomes 🌟

Unlocking the Potential of AI: The Impact of Machine Learning on Healthcare Outcomes 🌟

From Data to Diagnosis: How AI is Revolutionising the Prediction of Obesity, T2DM, and Heart Disease 🌟

From Data to Diagnosis: How AI is Revolutionising the Prediction of Obesity, T2DM, and Heart Disease 🌟

Kofo Are
Follow Nadzeya on F6S